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a b s t r a c t

The statistics of the Fry method of strain analysis are examined in this paper. Point objects in the pre-
deformed state are assumed in the Poisson distribution that is truncated at the maximum probability
density function (PDF) of a certain point object. The mean log likelihood function (MLLF) is defined as the
average sum of the log PDF of each individual point in the deformed state, and is maximized by use of
a grid search to solve for unknown parameters, strain and cutoff radius. In order to demonstrate the
feasibility of the new strain method, it is applied to artificial sets of point objects generated at the
prescribed parameters. Results deliver a very high accuracy of the strain estimate even for artificial sets
with many less packed point objects. Increasing the number of point objects in the MLLF tends to give
a higher accuracy of strain estimate, particularly for a smaller point number, less than 60 in this case.
A deformed conglomerate is analyzed to illustrate the new approach. A probable spurious point in these
data is identified using the detection method proposed in this paper. Its removal leads to a more robust
estimate of the strain.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Although similar to the classical center-to-center method
(Ramsay, 1967) in dealing with the points or centers of deformed
objects, the ingenious Fry method (Fry, 1979) is more flexible in
taking the distribution of objects into account, and requires no
knowledge of the nearest neighbour points. These strengths, as
well as the fact that deformed objects exposed at outcrop and/or
under the microscope are generally not good strain markers on
account of their unknown shapes in the pre-deformed state, make
the Fry method applicable as a simple and powerful tool to quantify
homogeneous deformation recorded by the distribution of points
in rocks of variable kinds (e.g., Hanna and Fry, 1979; González-
Casado et al., 1983; Crespi, 1986; Onasch, 1986; Ghaleb and Fry,
1995; Genier and Epard, 2007), and even the spatial distribution
of mineralization (Vearncombe and Vearncombe, 1999).

The Fry method was devised to graphically extract strain from
objecteobject separations in deformed rocks (Fry, 1979). For point
objects that possess an isotropic anti-clustered distribution and
then undergo homogeneous deformation, an elliptical vacancy or
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void is surrounded by points near the center of the Fry plot, that is
an analogue of a finite strain ellipse. Theoretical improvements
mainly concentrate on the subjectivity and reproducibility of the
strain ellipse estimated by use of the Fry method (Ailleres and
Champenois, 1994). The uncertainty in defining the finite strain
ellipse near the central vacancy is due to the deviation of real point
distributions from Fry’s (1979) assumption of an anti-clustered
distribution. For objects of strongly variable sizes that appear less
anti-clustered, Erslev (1988) developed a normalized Fry method
that modified each objecteobject separation according to the
shapes and sizes of the two neighbouring objects. Erslev (1988),
Dunne et al. (1990) and McNaught (1994) examined how the way
of defining object centers affects the estimated finite strain ellipse
from a practical viewpoint. Erslev and Ge (1990) later developed
a least-squares method to determine the best-fit strain ellipse from
nearest neighbour points in the normalized Fry plot. Fry (1999)
claimed that the use of the first or second summed moments in
estimating strain from some or all parts of points in the Fry plots is
unjustified. Waldron and Wallace (2007) attempted to determine
the strain ellipse in the non-normalized or normalized Fry plot by
locating the locus of the observedmaximumpoint-density gradient
that best fits the calculated point density within a central elliptical
domain.

In practice, the distribution of points in the Fry plot is influenced
by factors such as the distribution of point objects in the sampled
area, the shape and the size of the sampled area, and deformation.
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The second factor can be neglected only if a large circular sampled
area is chosen. In theabsenceof the second factor, outside the central
vacancy field, points tend to decrease their density outwards from
the center, and to be evenly distributed in all directions (Fig.1c). This
is probably the simple reason that most structural geologists have
chosen to extract strain only from the points near the center, using
some improved Fry methods. Disregarding most points in the Fry
plot in this way certainly weakens the claim of obtaining the strain
from all separations between objects rather than those lying closest
to the center, as Fry (1979,1999) believed. This makes apparent an
unclear issue about whether or not all object separations in the Fry
plot can be used for strain analysis.

In this communication, we examine some statistical aspects of
the Fry method, including the randomness and the truncation of
point distribution. The probability density function of distance
between the k-th nearest neighbour points is then formulated, from
which we define the likelihood function. The mean log likelihood
function is then maximized using a grid search to solve for strain,
which provides us with a new method of determining strain from
point distribution. This method is validated and illustrated by
applying it to artificial sets and a real set.
Fig. 1. An artificial set of 70 points in the pre-deformed state (a) and in the deformed state (b
of the plot (d). All points are marked by “plus”. See Section 4.1 for information on data gener
deformed state is determined by using the proposed method in the case of one outcome (
The symbols used in this paper are listed and defined in the
Appendix.

2. Strain analysis using the Fry plot

It is necessary to rehearse the procedure for making the Fry plot
(Fry, 1979; Hanna and Fry, 1979) before we make some theoretical
investigation of it. Let us take a template made up of the positions
of n the centres of deformed objects (Fig. 1b). Move this template
without any rotation to a new plot so as to locate one of the points
at the origin, and then mark other points from the template onto
the plot. This process is repeated until all the points in the template
have been used up. The map of all marked points, n(n�1) in
number, is called the Fry plot (Fig. 1c).

In essence, the Fry plot is a realization of n(n�1) points around
a fixed point (origin) in a way peculiar to it of repeating the same
random point pattern within the same domain but at differing
locations. This peculiarity never violates the assumption of
a statistically homogeneous or Poisson distribution of the point
objects in the sampled area (Fry, 1979). The density of marked
points in the Fry plot depends upon the cumulative occurrences of
). Fry plot of the set in the deformed state (c), and the best fit elliptical void in the center
ation. The best fit elliptical void, as well as the first nearest neighbour points in the pre-
k ¼ 1).
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each repetition. A little away from the central vacancy, the
tendency of outward decrease in density appears to tell us no more
information on strain than the distribution of points in the area.

In fact, the determination of strain requires the assumption of
a truncated Poisson distribution of points in the sampled area (Fry,
1979) of which the first or second or other near-neighbour points
tend to define the boundary of an elliptical void near the center of
the plot which can be used as a passive strain marker. The more
anti-clustered the points are, the better defined elliptical void we
get. However, point data available from rocks are generally not
strictly anti-clustered. As a remedy, a variety of empirical methods
have been developed, including the normalized Fry method (Erslev,
1988) and its derivatives such as the enhanced normalized Fry
method (Erslev and Ge, 1990), the refined Fry method (Ailleres and
Champenois, 1994) and the continuous function method (Waldron
andWallace, 2007). Thesemethods try to enhance in different ways
the definition of the central elliptical void in the Fry plot. Apart from
strain, the Fry plot contains other information on point distribution,
the pattern of points in the study area, for instance.

3. Statistics in the Fry method

The basic assumption of the Fry method of strain analysis (Fry,
1979) is a truncated Poisson distribution of point objects in the
sampled area. In the method, randomness, truncation and homo-
geneity are therefore three requirements of the point distribution
in the undeformed state. The first two requirements will be dis-
cussed in detail below. More advanced consideration of spatial
point processes is needed to address the last requirement (see
Lindsey, 1997; Daley and Vere-Jones, 2008; and others), and this is
beyond the scope of this simple communication. For simplicity, the
spatial homogeneity of point objects of interest is assumed.

3.1. Probability density function

Let us consider a two-dimensional Poisson process that has
a number of n outcomes or points, Xi (i ¼ 1, 2, ., n) within
X i

X j

r 0

X k

r ij

a bpre-deformed state  d

X

Fig. 2. Both the empty void and the subregion at pointXihave a circular shape in thepre-defor
This anisotropy is recorded by the distance between the k-th nearest neighbour points (k ¼ 1
a bounded region W of space. For any circular subregion V (V˛W)
with a radius of r, the probability density function (PDF) has the
following expression,

Pðk; l; rÞ ¼ e�lpr2
�
lpr2

�k
k!

(1)

where k is the number of points within the subregion V, l is the
mean density of points, and k! is the factorial of integer k. By setting
the differential PDFwith r to zero and solving this equation, the PDF
reaches the maximum when:

lpr2 ¼ k (2)

By randomness, we mean that each individual outcome has the
same possibility of occurring throughout the subregion, and
therefore is independent of other outcomes. This independence of
any two outcomes becomes invalid, particularly for those nearest
neighbour outcome pairs, when a truncated Poisson process is
taken into account. As required in the Fry method, the truncation is
isotropic in the pre-deformed state, thus giving rise to an empty
circular area for each individual outcome, within which any other
outcome is prohibited (Fig. 2a). Accordingly, the PDF of the trun-
cated Poisson distribution has the following expression,

Pðk; l; r; r0Þ ¼
�
aðk; l; r0ÞPðk; l; rÞ r � r0
0 r < r0

(3)

aðk; l; r0Þ ¼

ZþN

0

Pðk; l; rÞ2prdr

ZþN

r0

Pðk; l; rÞ2prdr
(4)

where r0 denotes the radius of the cutoff circular area, or cutoff
radius.

As explicitly required by the truncation, each sample point
becomes a circular point object with the same radius. The more
eformed state

k

X j

X i

r 0a
r ija

med state (a) and an elliptical one in the deformed state (b), as required in the Frymethod.
, 2, 3, .), which in turn makes it possible to extract strain from them in some way.
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well-packed these point objects are, the more well-defined ellip-
tical void in the central Fry plot we have. In the case of well-packed
point objects, it is thus justifiable to consider the occurrence of the
truncation at themaximumvalue of the PDF in formula (1) for k¼ 1,
for simplicity.

l̂pr20 ¼ 1 (5)

where l̂ is the intensity of well-packed point objects. In most
cases,l does not equal to l̂. Their difference reflects how the point
objects are packed.

However, other truncated Poisson distributions may be
employed to describe the packed points. They are beyond the scope
of this paper.
3.2. Strain analysis

In the Fry method, the isotropically truncated distribution
corresponds to the pre-deformed state where marked points in the
Fry plot tend to define a circular void near the center. When
homogeneous deformation takes place in the region of interest, the
isotropic truncation is changed to the anisotropic truncation that
permits the use of the elliptical central void as a passive strain
marker (Fig. 2). For the sake of strain analysis, the study point
objects are assumed well packed. Their PDF in the deformed state
and the PDF in the pre-deformed state are mutually related in the
following expressions:

Pðk; l̂; ria; r0a; q;RsÞ ¼ Pðk; l̂; ri; r0Þ (6)

ri ¼ ria
ffiffiffiffiffi
Rs

p
(7)

r0 ¼ r0a
ffiffiffiffiffi
Rs

p
(8)

where r0a is the minor axial length of the elliptical void near the
center, ria the minor axial length of the elliptical subregion of
interest, q the direction of the major strain axis, and Rs strain ratio.
l̂ is calculated from r0a, according to Eqs. (5) and (8).

For the purpose of strain analysis, the unknown, independent
parameters in formula (6) are r0a, q and Rs. They are estimated
below in a general way by maximization of the likelihood function.
For example, in the case of formula (4), the likelihood function
PLðk; l̂; r0a; q;RsÞ is formulated as:

PLðk; l̂; r0a; q;RsÞ ¼
Yn
i¼1

Pðk; l̂; ria; r0a; q;RsÞ (9)

In practice, instead of formula (9), the mean log likelihood
function is adopted that permits the comparison in value between
any two PDFs having different formulas,

logðPLðk; l̂; r0a; q;RsÞÞ
n

¼ 1
n

Xn
i¼1

logðPðk; l̂; ria; r0a; q;RsÞÞ (10)

By virtue of the complexity of formula (10), a grid search is used
in this paper to solve the maximization of the equation for the best
estimators of r0a, q and Rs. This simple algorithm is time consuming,
but competent in searching for the global solution at a certain
prescribed resolution. Much about grid search will be described in
the next section.

We wrote a MS Fortran 5.0 program for finding the best strain
estimate by maximising the mean log likelihood function by a grid
search strategy. The code is available to interested readers on
request.
3.3. Randomness

The pattern of n outcomes in the regionW has a direct impact on
how the nearest neighbour points define the elliptical void in the
center of the Fry plot, as mentioned above. The spatial randomness
of these outcomes may be evaluated by using either first-order
measures (e.g. Clark and Evans, 1954) or second-order measures
(e.g. Ripley, 1976).

However, in this paper, the degree of packing of a given set of
point objects is qualitatively described by intensity ratio, the ratio
of l̂ to l. When the intensity ratio approaches 1, the point objects
tend to be well packed.

In the frame of well packing, the randomness of point objects is
tested using the KolmogoroveSmirnov (KeS) test statistic (see
Gibbons, 1985),

DðnÞ ¼ maxjFcalðk; l̂; ria; r0a; q;RsÞ � Fobsðk; l̂; ria; r0a; q;RsÞj
(11)

Fcalðk; l̂; ria; r0a; q;RsÞ ¼

Zria ffiffiffiffi
Rs

p

r0a
ffiffiffiffi
Rs

p
Pðk; l̂; rÞ2prdr

ZþN

r0a
ffiffiffiffi
Rs

p
Pðk; l̂; rÞ2prdr

(12)

where Fcal and Fobs are the calculated and the observed cumulative
distribution frequencies of the k-th nearest neighbour in the retro-
deformed state at a distance of ria

ffiffiffiffiffi
Rs

p
. With a confidence a, the

study point objects are random if the calculated statistic is no more
thanDaðnÞ. Otherwise, they are either clustered or anti-clustered.
4. Tests using artificial examples

In this section, artificial sets of random points generated by
the prescribed parameters are taken as examples to demonstrate
the feasibility of the new method, and to examine what factors the
accuracy of the strain estimate depends upon.
4.1. Data generation

The procedure for generating sets of point objects at random is
summarized below.

1. Input the values of the prescribed parameters such as the
radius of the cutoff circular area (r0), the direction of the major
strain axis (q), and strain ratio (Rs). They are 0.02, 60� and 3.0,
respectively, in this case.

2. Generate a random point within a 10 � 10 square region, and
then look for its minimum nearest neighbour distance to other
saved points. Save it if the distance is no less than r0. Otherwise,
repeat this step.

3. Displace the new saved point using the prescribed strain.
4. Accept the new saved point if its distance to the center of the

square in the deformed state is no more than 5; otherwise,
return to step 2. For tens of saved points, calculate strain from
them using the method proposed in this paper. (The circular
shape of the re-sampled area in the deformed state ensures the
isotropy of data sampling, in hope of the directional spread of
the nearest neighbour points in the Fry plot, as mentioned in
the introduction.)



Y. Shan, W. Xiao / Journal of Structural Geology 33 (2011) 1000e10091004
4.2. Grid search

As state previously, an exhaustive grid search scheme is adopted
in this paper to look for the best estimates of cutoff radius (r0), the
direction of the major strain axis (q) and the strain ratio (Rs)
through maximizing the mean log likelihood function. In the
parameter space, these parameters are discretized in the following
way:

1. q is taken as an integer degree of 0e179�.
2. Rs is taken as a real of 1.0e20.0 with a spacing of 0.1. The upper

limit of Rs may be set to a larger or smaller value, depending
upon the extent of strain ratio. 20.0 is sufficiently large in the
cases of this paper.

3. Once both q and Rs are obtained, they are used to retro-deform
the point set, and then calculate the minimum distance
between the nearest neighbour points. An open interval of 0 to
the distance is then evenly meshed into 50 nodes that we
search for the best estimate of r0.
4.3. Results

Shown in Figs. 1 and 3 are results from applying the proposed
strain method for k ¼ 1, 2 and 3, respectively, to a large number of
point object sets generated in the way described above.

In Fig. 3dee, the accuracy of strain estimate has a great fluctu-
ation at the start, and then strongly tends to increase with the
number of points in the set. The estimated strain matches the
prescribed strain very well, when point number is no less than 60.
Meanwhile, the estimate of cutoff radius appears to decrease
monotonically, and approaches the prescribed cutoff radius when
the number of points becomes greater than 60 (Fig. 3f). With the
increase of outcomes (k), there exists aweak tendency of increasing
the accuracy of strain estimate and cutoff radius, particularly for
a point number of less than 60.

As a whole, 60 is a turning point for the maximised mean log
likelihood function (MMLLF) (Fig. 3a). Above this number, the
measure displays a stronger tendency to increase. Apparently, over
this number there must exist a sufficient portion of well-packed
point objects that play a significant role in guaranteeing the great
accuracy of strain estimate. This is also reflected by the increase of
the intensity ratio with point number (Fig. 3b). All the values of the
intensity ratio are larger than 1.0, implying that the point sets
should be not well packed. It is thus fortunate that we can obtain
a high accuracy of strain estimate from some less packed point
objects.

In contrast, the KeS test statistic has a great fluctuation, without
any tendency of increasing or decreasing (Fig. 3c). Occasionally, it
becomes smaller than D0:10, indicating the randomness of points
within the confidence level.
5. Application

A real example of clast supported conglomerate (Fig. 4) was
chosen in this section. Pebbles in the rock are intensely deformed
and aligned approximately east e west, with an axial ratio of
2.5e16.0 or more. Although a difference in viscosity between the
matrix and the pebbles would cause a departure of the estimated
strain from the real value, this effect is thought to decreasewith the
amount of the matrix (Gay, 1968a,b). For this reason, we consider
only the upper part that contains a majority of more closely packed
pebbles. The geometrical centers of these pebbles (Fig. 5a) are
recognized by eye as point objects.
Applying our proposed method to the set gives rise to results
shown in Figs. 5e and 6. In the estimated strain, Rs ¼ 16.2 and
q ¼ 170�. Both the intensity ratio and the KeS test statistic have
a relatively large value, 2.01 and 0.24, indicating that the point
objects in the set are less packed and less random. In this instance,
the strain ratio must be over-estimated for it is approximately
equivalent to the axial ratio of the most elongated pebbles. A
plausible reason for this over-estimation is the existence of some
spurious point object(s) due to the under packed state of the set.

Spurious points, if they exist in the set, need be picked out
before we can make meaningful estimation of strain from other
points. For this purpose, we develop a detection method, similar to
leave-one-out cross validation (Evans and Rosenthal, 2000), whose
procedure is summarized below.

1) For a set of n point objects, delete each individual point in
a sequence and calculate the MMLLF for the rest, or n�1 points
by use of the grid search described in the previous section.

2) Delete from the set the point corresponding to the minimum
value of the MMLLF, and return to step 1 until the number of
deleted points reaches the prescribed value, 10 in this case.

3) Look for the spurious point(s) at the swift change of the
minimum value of the MMLLF with the number of deleted
points.

Figs. 5f and 6 show the results from applying the above proce-
dure to the set. The best solution of strain has a direction of 167� for
the major strain axis, and a strain ratio of 7.3. All strain estimates
vary very slightly, in contrast with strain estimated from the orig-
inal data set. This makes us believe that there exists only one
spurious point in the set. Hence, we accept with confidence strain
estimated from any of the above sets excluding this spurious point,
although the MMLLF reaches the maximum at a deleted data
number of 10. In addition, the central void in Fry plot appears more
apparent in the set excluding a number of ten deleted data (Fig. 5d)
than in the original set (Fig. 5c), because the MMLLF is about two
orders of magnitude larger for the former than for the later (Fig. 6a).

6. Discussion

Some theoretical and practical aspects about this methodwill be
discussed below.

6.1. Advantages and disadvantages

The proposed strain method highlights a new approach for
estimating of strain from point distributions not by visual appre-
ciation but by numerical solution. We believe that it provides
a more objective and more robust measure of strain than pre-
existing improvements on the Fry method, many of which are
based upon visualization. It is however a pity that the numerical
treatment does not need the Fry plot as a working platform. This
would certainly disappoint those structural geologists preferring
manual manipulation and visual appreciation, although the
numerical estimates are superimposed on a visual plot (Figs. 1d and
5eef). In addition, the grid search adopted in this paper is very
time-consuming, and should be replaced by other numerical
algorithms much more efficient in search of the best solution of
strain.

6.2. Use of all the points in the Fry plot

Canwe use all the points in the Fry plot for estimation of strain?
This is raised in the Introduction section, since most pre-existing
improvements on the Fry method (e.g. Erslev, 1988; Erslev and Ge,
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Fig. 4. A clast supported conglomerate from Gäddede, Sweden showing pebbles with elongation in an approximately horizontal direction. A number of 51 pebbles only in the upper
part were taken into account for their dense occurrence. (Photo courtesy of R.J. Lisle.)
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1990; Ailleres and Champenois, 1994) concentrate on the nearest
neighbour points, just a small minority of points in the plot. Our
answer to this question is optimistic. In our method, it is fairly easy
to use all or a vast majority of points in the plot to estimate strain
from them through increasing the number of outcomes in the PDF.
The increase tends to enhance the accuracy of strain estimate, as
discussed previously. However, as a drawback about doing this, the
edge effect becomes more apparent when the more subregions of
Fig. 5. For the original set with and without ten deleted data (a and b), their Fry plots (c and
the pre-deformed state (e and f). All points are marked by “plus”. The deleted points are p
the outcomes are not confined to the sampled region. How it affects
the accuracy of strain estimate is beyond the scope of this paper.

6.3. Spurious points

The less densely the packed point objects are, the greater the
probability of the existence of spurious points. The presence of
spurious points would affect the accuracy of strain estimate to
d) and the best fit elliptical voids in the center and the first nearest neighbour points in
icked out using the detection method developed in this paper.
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a greater or lesser degree. As far as we are concerned, there is
no good way to recognize spurious point(s), if present. The
detection method used in this paper is inspired by the idea of
leave-one-out cross validation. It assumes that, for the point set
excluding the spurious point(s) the MMLLF should reach the
maximum, and should have a very slight variation, if at all.
Otherwise, it is beyond the capacity of the method to pick out
spurious point(s).
Appendix A. List of symbols and their definitions

Symbols Definitions Explanations

W The sampled region in
two dimension

Xi The occurrence of each point
object in W

i ¼ 1, 2, ., n

V A circular subregion of W V˛W
n The number of outcomes or

points in W
See (9)e(11)

P() The probability density function See Eqs. (1), (3),
(6) (9) and (10)
6.4. Point object distribution

Asmentioned above, point objects in the pre-deformed state are
assumed to obey the Poisson distribution that is truncated at the
maximum PDF of one outcome (k ¼ 1). The nearest neighbour
outcomes thus become mutually dependent if their separation is
smaller than twice the cutoff diameter, or independent if it is larger.
Strictly speaking, such truncation is better explained by two-
dimensional sequential random packing (SRP) than by the trun-
cated Poisson process. Packing is a common phenomenon not only
in real life, but also in scientific disciplines such as physics, chem-
istry and biology. At present we have an analytical solution to one-
dimensional packing problems, also called the car-parking
problem, for one or two types of the object size (e.g. Rényi, 1958;
Mannion, 1964; Rabinovitch et al., 1999; Rawal and Rodgers,
2005), but, unfortunately, solving two-dimensional SRP problems
requires numerical methods (Akeda and Hori, 1976; Torquato et al.,
2000).
r The radius of V See Eqs. (1)e(4)
r0 The radius of the empty

circular area in the
pre-deformed state, or cutoff radius

See Eqs. (3)e(6)

r0a The length of the minor strain
axis of the cutoff elliptical
area in the deformed state

r0 ¼ r0a
ffiffiffiffiffi
Rs

p
; see

Eqs. (6) and (8)e(12)

ria The minor axial lengths of the
elliptical subregion centered
at Xi in the deformed state

See Eqs. (6)
and (8)e(12)

l The intensity of the Poisson process See Eqs. (1)e(4)
l̂ The density of well-packed

point objects
See Eqs. (5)e(6)
and (8)e(12)

k! The factorial of integer k See Eq. (1)
k The number of the nearest neighbour

outcomes at the proximity
to a certain outcome

See Eqs. (1)e(4), (6)
and (9)e(12)

q The direction of the major strain axis See Eqs. (6) and (9)e(12)
Rs Strain ratio See Eqs. (6)e(12)
D() The KolmogoroveSmirnov test statistic See Eq. (11)
Fcal() The calculated cumulative distribution

frequency of the k-th
nearest neighbour at a certain distance

See Eqs. (11)e(12)

Fobs() The observed cumulative distribution
frequency of the k-th
nearest neighbour at a certain distance

See Eqs. (11)e(12)
7. Conclusions

Statistical aspects of the Fry method of strain analysis have been
examined in this paper, including two of the fundamental
requirements, truncation and randomness. Point objects in the pre-
deformed state are assumed in the Poisson distribution that is
truncated at the maximumvalue of the probability density function
(PDF) of one outcome. Under this assumption, the point objects
appear well packed, and provide a good strain marker for the Fry
method. Multiplying the PDF at each individual outcome in the
deformed state gives the likelihood function. The mean log of the
likelihood function (MLLF) is maximized using the grid search to
look for the best solution of the unknown parameters, such as the
direction of the major strain axis, strain ratio and cutoff radius. For
point objects in the pre-deformed state, their packing degree is
described by the intensity ratio, and their randomness with respect
to the well-packed point objects is tested using the Kolmogor-
oveSmirnov test statistic.

This new method was applied not only to a series of artificial
sets of point objects generated at the prescribed parameters, such
as strain, cutoff radius, and the number of randomly packing points
at each set, but to an example of a deformed conglomerate as well.
Results demonstrate the feasibility of the method. The estimated
strain has a very high accuracy even for artificial sets of less packed
points. The accuracy tends to increase with the number of
outcomes in the PDF, particularly for a point number of less than 60.

In the real example, the excessively small value of the maxi-
mized MLLF was attributed to the presence of one spurious point in
the set. The spurious point was picked out using the detection
method developed in this paper, and we had a more robust strain
estimated from the rest points.

Finally, some theoretical and practical aspects of this novel
method were discussed, including the advantages and disadvan-
tages of the method, the possibility of using all the points in the Fry
plot for strain estimation, the recognition of spurious points, and
the distribution pattern of point objects.
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